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Abstract. An analysis of the grand canonical version of the spherical model far a spin 
glass (first studied by Kosterlitz, Thouless and Jones) shows that its spin glass phase can 
be characterized by an order parameter function. This is a consequence of the large spin 
length fluctuations pemitted by the relaxation of the spherical constraint. Along with the 
distribution of order parameter values, we find a distribution function for the free energy 
whose variations are extensive, as well. Both distributions are reminiscent of those found 
in the Parisi solution and in the random energy model for the king spin glass. There are 
important differences from the solutions proposed for the king model. In particular, the 
set of overlaps does not possess an ultrametric solution. 

The spherical model of a magnet with random long-range interactions, first studied 
by Kosterlitz, Thouless and Jones [I], is, perhaps, the simplest of the solvable models 
leading to a spin glass transition. As the investigation by Kosterlitz et al demonstrated, 
this model has some very useful characteristics, among them analysability with and 
without the use of replicas. Because of this property, the model provides a non-trivial 
testing ground for replication techniques as they are applied to the study of spin glass 
systems. One can also study other aspects of spin glass behaviour in the context of 
this model and obtain results that may prove to be at least suggestive regarding the 
behaviour of more realistic models of this system. 

Kosterlitz et a/ were able to show that the replication trick and the standard 
assumptions that are made in applying it to spin glass systems-including replica 
symmetry in the ordered phase [2,3]-yields the same results as a calculation that 
does not utilize replicas. The results of a subsequent study of the effects on the replica 
symmetric state of fluctuations indicate that the replica symmetric phase is, indeed, 
stable at all orders [4]. To be more precise, it was found that the ‘replicon’ models, 
the negative gap in whose spectrum gives rise to the deAlmeida-Thouless instability 
[SI in Ising and other spin glass systems, are strictly gapless in the spherical model 
spin glass. 

The spherical model is known to be a close mathematical analogue to the ideal 
Bose gas of number-conserved, non-relativistic particles [6]. The spherical constraint 
is equivalent to the requirement of fixed particle number in the Bose gas, which is 
enforced in the grand canonical ensemble of that system by an adjustable chemical 
potential. Because of their intimate mathematical relationship the phase transitions of 
these two models fall into the same universality class [7]. That is to say, given identical 
spatial dimensionalities and a proper correspondence between spin wave and particle 
spectra, analogous critical exponents are the same for the two systems. 
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This all leads us to the following highly intriguing observation. The ideal Bose gas, 
in its condensed phase, displays a very interesting anomaly. In contrast to what is 
believed to be true of almost all other many-body systems in the thermodynamic limit, 
the grand canonical ensemble of the ideal Bose gas in its condensed phase is not 
equivalent to the canonical ensemble [SI. In particular, the occupation number of the 
macroscopically occupied single-particle state is not self-averaging. This number, which 
is O ( N ) ,  has fluctuations that are also O ( N )  with finite probability as N + m .  This 
remarkable property of the ideal Bose gas in the grand canonical ensemble is generally 
dismissed as a pathology that is unique to the system, and that will disappear as soon 
as interactions are introduced between the particles [S, 91. A careful study of the nature 
of the grand canonical ensemble, and of its relevance to real systems-ven non- 
interacting ones-provides additional justification for ignoring this property of the 
ideal Bose gas [9]. 

We have found that the above feature of the ideal Bose gas is also present in the 
spherical model of the spin glass. In the case of the spherical model the two ensembles 
correspond to the model with the spherical constraint strictly enforced (the ‘strict’ 
spherical model) and the model with the constraint enforced on the average (the ‘mean’ 
spherical model). It is the mean spherical model that corresponds to the grand canonical 
ensemble, and it is on that model that we will concentrate our discussion from this 
point on. We stress that in relaxing the length constraint, we render the model into a 
different form from the strict version considered by Kosterlitz et al. In the strict version 
the order parameter is self-averaging. As we will see, taking the mean spherical model 
seriously yields, first, a Parisi-like order parameter [lo, 111 and, second, a free energy 
distribution that bears a resemblance to the distribution of M6zard et al [12], but 
describes macroscopic rather than 0 ( 1 / N )  fluctuations. It is hoped that further study 
ofthese tantalizing results and their consequences will lead to a deepened understanding 
of the spin glass phase, and that we will be taken one step closer to a complete ab 
initio characterization of spin glasses. 

Given the simplicity of the spherical model, the derivation of the main results to 
be reported here is relatively uncomplicated and can be presented almost in its entirety. 
We start with the standard spin glass Hamiltonian 

where the sis are scalar or Ising-like spins and the coupling strengths J,  are random 
with a Gaussian distribution and have an infinite range. That is, ( J c )  = 0 and ( (Jc12)  = 
J z / N ,  independent of i and j [3]. The quantity N is the total number of spins in the 
system. The eigenvalue distribution of a real symmetric N by N matrix with indepen- 
dently random elements and the kind of distribution that controls the elements of the 
interaction matrix J is given, in the limit of large N, by the well known semicircle law 

The spherical constraint is enforced by introducing a Lagrange multiplier into the 
Hamiltonian, i.e. PH + P H f A  2 sf. In terms of the normalized eigenfunctions of the 
matrix J, denoted by I//(”’, so that 

[131. 
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one has 

where s(*) is the amplitude of the corresponding eigenfunction. 
The spin glass transition occurs when the mean spherical constraint cannot be met 

unless A is within O( l / N )  of pJ,  where 25 is the largest eigenvalue of J. If we assume 
the system is in the spin glass phase and write A = p J +  1/2NQ( T )  the spherical 
constraint equation takes the form 

1 kTN 
N = N Q ( T ) +  E NQ( T )  +- 

A + J  P [ J  - A] J ‘  (4) 

In the second term on the right-hand side of equation (4) we have neglected the 
0 ( 1 / N )  difference between A and J. The function Q ( T )  is the expectation value 
N-’(s;) ,  where so is the amplitude of the A =2J eigenmode. It is proportional to the 
usual spin glass order parameter defined by N-‘  Xj mf [I]. From equation (4) we have 
Q( T )  = 1 - T /  T,, where TSG = J is the transition temperature below which the system 
is a spin glass. 

Now, let us consider two copies of this model. Below TsG each of these two replicas 
will he in a condensed, or spin glass phase, with the amplitudes of the eigenfunctions 
of J determined by the Boltzmann factor on the right-hand side of equation (3). The 
overlap between the spin configurations of the two systems is 

where the superscripts refer to the respective replicas. The distribution function of this 
overlap, P(q), is given by 

where 

iw 
xexp ( A  -41 [ ( s ~ * ” ) 2 + ( s ~ A ~ z ) 2 ~ [ 2 A - p A ] + - s ~ A ~ ~ s ~ * ~ 2 )  N rids(*). * (7) 

Utilizing the fact that the difference between the largest eigenvalue of J and any other 
eigenvalue of that matrix will be much larger than 1/N,  we obtain 
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Integrating over the do's in equation (10) and then over o in equation (6), we obtain 
for P ( q ) =  P ( q ) + & - q ) ,  

where K o ( y )  is a zeroth-order modified Bessel function. The distribution function P ( q )  
is, according to Parisi, directly related to his relica-symmetry-breaking q(x) via the 
inverse relation 

or, according to our results, 

Plots of P ( q )  and q(x), the latter obtained by inverting equation ( l l ) ,  are shown as 
figures l ( a )  and l ( b ) .  

free energies in the mean spherical model we consider the model with a generalized 
spin constraint, i.e. by setting 2 s; = pN. The quantity p, which is unity in the conven- 
tional normalization, is variable and corresponds, in the Bose gas picture, to the particle 
density . 

r, icvestig2te the effect of the !zrge, qx)  P.sctc2tiocs oe the dis:r'.bn:ioe of the 

The free energy per spin for T < T,, is 

where f (p, T )  is the free energy computed for the canonical ensemble corresponding 
to fixed p. The grand canonical, or mean spherical constraint, ensemble and the 
canonical, or strict constraint, ensemble are related by the following integral transform 
in the thermodynamic limit: 

where u(x, p )  is known, in the case of the ideal Bose gas, as the Kac density [S, 91. 
in the infinite voiume iimit, i' is the free energy in the grand canonicai, or mean 
constraint, ensemble. As indicated by equation (13), this free energy is given by the 
weighted sum over the free energies in canonical ensembles. The statistical weight of 
a given ensemble of the latter type, Z,(x, T ) ,  is 

Nexp(-NAx)Z,(x, T )  
v(x, p )  = lim 

N-m Z"(p, A, Tj 

where the spins in Z, satisfy Z:, sf  = xN, and the Lagrange multiplier A (in both 
numerator and denominator) is chosen to satisfy the mean constraint ZE, (s;) = pN. 

It is evident that in order for the free energies f' and f to be the same the Kac 
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Figure 1. ( a )  The overlap probability distribution function, P ( q ) ,  for three different 
temperatures. ( b )  q ( x )  obtained by inverting equation ( 1 1 )  of the text for the three cases 
in part ( a ) .  

density must be a delta function. However, this is not so in the condensed phase of 
either the spin or particle system, as we show below. For T <  T,, , V(X, p )  has, instead, 
a most interesting form. 

To calculate v(x, p )  we first find its Fourier transform, the so-called characteristic 
function: 
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The quantity on the left-hand side represents a thermal average taken with respect to 
the grand canonical ensemble satisfying the mean constraint equation. One finds 

Inverting equation (15), 

v ( x . P ) = s ( x - P )  ( T >  TSG) 

-exp( - (x-x,) O(x-x,) 1 
(17) 

In the above equation x. = p - Q ( p ,  T) and Q(p ,  T) = p ( 1 -  T/ TsG(p)). If the above 
form for the Kac density is substituted into equation (13) then f g  can he shown to be 
identical to equation ( 1 2 ) .  If we now interpret equation (13) as the following average 
over free energies 

1 1 1 - 
-J"JX-x, ~ J Q ( P ,  T )  

( T <  TsG). 

changing variables in equation (17), using equation (12), we find that the distribution 
function is given by 

where f= [ - T - ( T / 2 ) ( l n ( 2 r r T / J ) - f ) l .  This expression is obtained by setting p = 1, 
upon doing which we recover the spherical model. The distribution for the grand 
canonical free energy, f'( T), in equation (19) is reminiscent of the distribution for 
free energies conjectured by MCzard et al [12]. However, it differs in that it allows for 
extensive fluctuations in the free energy, whereas in the generalized random energy 
model the distribution is postulated to govern fluctuations in the free energy of order 
unity. , 

The result in equation (19) for 9(f), and the distribution, P ( Q ) ,  of values of Q 
can both be deduced from knowledge of the Kac density, equation (17). This quantity 
contains the information needed to compute statistical mechanical averages in the 
grand canonical ensemble. The results for the spin glass order parameter and distrihu- 
tion of energies are surprisingly similar to the conjectures made for the Ising spin 
glass. At the very least, we feel that a deeper and more comprehensive study of the 
spherical model is called for. It would be useful, for example, to see how the results 
reported here can be obtained in the context of a replica-based calculation. If one can, 
indeed, start with a broken-replica-symmetry order parameter in the absence of replica- 
symmetry-breaking terms in the Hamiltonian it may he possible to treat such terms as 
a perturbation. 

While the mean spherical model admits an order parameter function similar in 
form to that of Parisi [lo, 111 and that obtained in simulations by Young [141 there 



Spherical model of a spin glass 2199 

is an important difference. The overlaps of states taken three at a time do not possess 
the property of ultrametricity-a property intrinsic to the construction of Q(x) due to 
Parisi, and assumed, as well, by MCzard er a1 [12]. Furthermore, our free energy 
distribution, equation (19), is missing a crucial feature of the distribution of Mizard 
et a/ [ 121. They assume an ensemble of independently distributed free energies, whereas 
the distribution obtained here controls only one free energy. Finally, the properties of 
the spherical model spin glass reported on here are shared by spherical models with 
non-random interaainns, They %re no! specific to z rzcdom rr?Egne!ic sys!cm. A.! !his 
should be taken as a caution. We nevertheless anticipate that further study of the 
spherical model will lead to substantial improvement of our state of knowledge 
regarding the microscopic structure of the spin glass phase. 
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